For the first time, scientists have seen the shock wave emanating from an exploding star in visible light.
Using NASA's planet-hunting Kepler Space Telescope, researchers saw the shock wave coming from a massive star explosion (a supernova) that came into Kepler's view in 2011. The star that ended its life as a supernova is named KSN 2011d, which is nearly 500 times the diameter of the sun, and located about 1.2 billion light-years away.
The shock breakout lasted only about 20 minutes, so Kepler's ability to catch a glimpse of this event is "an investigative milestone for astronomers," NASA said. At the time Kepler observed the explosion, the telescope was gazing continuously at a point in the Cygnus constellation, looking for extrasolar planets. The shock wave observation will give investigators more information into how these shock waves are formed from stellar explosions. [Video: Supernova's Super-Shockwave Seen For The First Time]
"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," lead author Peter Garnavich, an astrophysics professor at the University of Notre Dame, said in a statement. "You don't know when a supernova is going to go off, and Kepler's vigilance allowed us to be a witness as the explosion began."
- See more at: http://www.space.com/32337-first-supernova-shock-wave-imaged-by-kepler.html#sthash.3QpOS
For the first time, scientists have seen the shock wave emanating from an exploding star in visible light.
Using NASA's planet-hunting Kepler Space Telescope, researchers saw the shock wave coming from a massive star explosion (a supernova) that came into Kepler's view in 2011. The star that ended its life as a supernova is named KSN 2011d, which is nearly 500 times the diameter of the sun, and located about 1.2 billion light-years away.
The shock breakout lasted only about 20 minutes, so Kepler's ability to catch a glimpse of this event is "an investigative milestone for astronomers," NASA said. At the time Kepler observed the explosion, the telescope was gazing continuously at a point in the Cygnus constellation, looking for extrasolar planets. The shock wave observation will give investigators more information into how these shock waves are formed from stellar explosions. [Video: Supernova's Super-Shockwave Seen For The First Time]
"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," lead author Peter Garnavich, an astrophysics professor at the University of Notre Dame, said in a statement. "You don't know when a supernova is going to go off, and Kepler's vigilance allowed us to be a witness as the explosion began."
- See more at: http://www.space.com/32337-first-supernova-shock-wave-imaged-by-kepler.html#sthash.3QpOSjBf.dpuf
For the first time, scientists have seen the shock wave emanating from an exploding star in visible light.
Using NASA's planet-hunting Kepler Space Telescope, researchers saw the shock wave coming from a massive star explosion (a supernova) that came into Kepler's view in 2011. The star that ended its life as a supernova is named KSN 2011d, which is nearly 500 times the diameter of the sun, and located about 1.2 billion light-years away.
The shock breakout lasted only about 20 minutes, so Kepler's ability to catch a glimpse of this event is "an investigative milestone for astronomers," NASA said. At the time Kepler observed the explosion, the telescope was gazing continuously at a point in the Cygnus constellation, looking for extrasolar planets. The shock wave observation will give investigators more information into how these shock waves are formed from stellar explosions. [Video: Supernova's Super-Shockwave Seen For The First Time]
"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," lead author Peter Garnavich, an astrophysics professor at the University of Notre Dame, said in a statement. "You don't know when a supernova is going to go off, and Kepler's vigilance allowed us to be a witness as the explosion began."
For the first time, scientists have seen the shock wave emanating from an exploding star in visible light.
Using NASA's planet-hunting Kepler Space Telescope, researchers saw the shock wave coming from a massive star explosion (a supernova) that came into Kepler's view in 2011. The star that ended its life as a supernova is named KSN 2011d, which is nearly 500 times the diameter of the sun, and located about 1.2 billion light-years away.
The shock breakout lasted only about 20 minutes, so Kepler's ability to catch a glimpse of this event is "an investigative milestone for astronomers," NASA said. At the time Kepler observed the explosion, the telescope was gazing continuously at a point in the Cygnus constellation, looking for extrasolar planets. The shock wave observation will give investigators more information into how these shock waves are formed from stellar explosions. [Video: Supernova's Super-Shockwave Seen For The First Time]
"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," lead author Peter Garnavich, an astrophysics professor at the University of Notre Dame, said in a statement. "You don't know when a supernova is going to go off, and Kepler's vigilance allowed us to be a witness as the explosion began."
For the first time, scientists have seen the shock wave emanating from an exploding star in visible light.
Using NASA's planet-hunting Kepler Space Telescope, researchers saw the shock wave coming from a massive star explosion (a supernova) that came into Kepler's view in 2011. The star that ended its life as a supernova is named KSN 2011d, which is nearly 500 times the diameter of the sun, and located about 1.2 billion light-years away.
The shock breakout lasted only about 20 minutes, so Kepler's ability to catch a glimpse of this event is "an investigative milestone for astronomers," NASA said. At the time Kepler observed the explosion, the telescope was gazing continuously at a point in the Cygnus constellation, looking for extrasolar planets. The shock wave observation will give investigators more information into how these shock waves are formed from stellar explosions. [Video: Supernova's Super-Shockwave Seen For The First Time]
"In order to see something that happens on timescales of minutes, like a shock breakout, you want to have a camera continuously monitoring the sky," lead author Peter Garnavich, an astrophysics professor at the University of Notre Dame, said in a statement. "You don't know when a supernova is going to go off, and Kepler's vigilance allowed us to be a witness as the explosion began."